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• Thermal Radiative Transfer (TRT) equations
• describe propagation and interaction of photons with the

surrounding material
• are challenging to solve due to the stiff non-linearity and

high-dimensionality of the problem

• TRT applications at LANL include simulations of
• Inertial Confinement Fusion (ICF) experiments
• astrophysical phenomena, such as collapsing stars

(a) ICF (b) supernova

Figure: TRT applications
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• Advantages, compared to the deterministic case

• easier to extend to complex geometries and higher dimensions
• easier to parallelize

• Disadvantages

• Monte Carlo solutions to IMC equations exhibit statistical
variance and IMC convergence rate is estimated to be

O(1/
√

Np)

where Np is the number of simulation particles
• Even when advanced variance reduction techniques employed,

Monte Carlo simulations

• require a very large number of simulation particles
• exhibit slow convergence
• prone to statistical errors

• Implicit Monte Carlo codes are typically very large, long running
codes with large memory requirements at checkpointing &
restarting
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Project Goal: use parametric Machine Learning methods in order to
reduce memory requirements at checkpointing & restarting in the
IMC simulations of Thermal Radiative Transfer using

• Expectation Maximization and Weighted Gaussian Mixture
Model-based approach for ‘particle-data compression’,
introduced in Plasma Physics to model Maxwellian particle
distributions by Luis Chacon and Guangye Chen

• Expectation Maximization with Weighted Hyper-Erlang Model in
order to compress isotropic IMC particle data in the frequency
domain

• Expectation Maximization and von Mises-Fisher Mixture Model
for compression of anisotropic IMC particle data in the angular
domain (work-in-progress)

Note: weighted Gaussian mixture models have been used at LANL in the
simulations of radiographic X-ray sources (see ‘A maximum likelihood method for
linking particle-in-cell and Monte-Carlo transport simulations’, Kevin J. Bowers,
Barbara G. Devolder, Lin Yin, Thomas J.T. Kwan, (2004)).
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Consider 1-d Transport Equation without physical scattering and
external sources, in the Local Thermodynamic Equilibrium (LTE):

1

c

∂Iν
∂t

+ µ
∂Iν
∂x

+ σν Iν =
1

2
σν Bν (1)

coupled to the Material Energy Equation

cv
∂T

∂t
=

∫∫
σν Iν dν dµ−

∫
σν Bνdν (2)

where the emission term

Bν(T ) =
2 h ν3

c2
1

e
h ν
k T − 1

(3)

is the Planckian (Blackbody) distribution and

• Iν = I (x , µ, t, ν) - radiation intensity

• ν - frequency, T - temperature

• σν - opacity, cv - material heat capacity

• k - Boltzmann constant, h - Planck’s constant, c - speed of light
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Backward-Euler discretization in time

1

c

I (n+1) − I (n)

∆tn
+ µ

∂

∂x
I (n+1) + σ I (n+1) =

1

2
σ a c T (n+1)4 (4)

Linear Discontinuous Galerkin (LDG) discretization, with basis
functions defined in spacial cells i = 1, . . . , nc :

I (x , µ, t) = I 0 φ0(x) + I 1 φ1(x)

φ0(x) = (xi+1/2 − x)/∆x , φ1(x) = (x − xi−1/2)/∆x
(5)

Discrete Ordinates (Sn) discretization in angle µ = µm

E (x , t) =
1

c

∑
m

ωm (I 0m φ0(x) + I 1m φ1(x)) (6)

where ωm are the Gauss-Legendre quadrature weights

Temperature term Θ = a T 4 can be represented as follows

Θ(x , t) = Θ0 φ0(x) + Θ1 φ1(x) (7)
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Energy Equation

With Backward-Euler discretization in time

ρ cν
T i (n+1) − T i (n)

∆t
+ σ a c T i (n+1)4 − σ c E i = 0, i = 0, 1 (8)

and the following representation of temperature

T (x , t) = T 0φ0(x) + T 1φ1(x) (9)

We obtain a non-linear system of equations that can be solved via the
Newton’s Iteration in this simple case

T (k+1) = T (k) + δT (k), δT (k) = − F(T (k))

F ′(T (k))

F(T (k)) = ρ cν
T (k) − T (k−1)

∆t
+ σ a c T (k)4 − σ c E

F ′(T (k)) =
ρ cν
∆t

+ 4σ a c T (k)3 = 0.

(10)
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Fleck and Cummings

Transport Equation

1

c

∂Iν
∂t

+ µ
∂Iν
∂x

+ (σνa + σνs) Iν =
1

2
σνa c u

n
r +

1

2
σνs (bν/σp)

∫∫
σν′ Iν′ dν′ dµ

(11)

Material Temperature Equation (T n = T (tn) ≈ T (t), tn ≤ t ≤ tn+1)

cν T
n+1 = cν T

n − f σp c ∆t unr + f

∫ tn+1

tn

dt

∫∫
σν′ Iν′ dν′ dµ (12)

• f = 1/(1 + αβ c ∆t σp) - Fleck factor

• σνa = f σν - effective absorption opacity

• σνs = (1− f )σν - effective scattering opacity

• ur - radiation energy density, bν(T ) - normalized Planckian

• σp =
∫
σν bν dν - Planck opacity

• α ∈ [0, 1] s.t. ur ≈ α un+1
r + (1− α) unr ;β = ∂ur/∂um
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the IMC method

On each simulation time step

• Particle Sourcing – calculating total energy in the system from
different sources due to the

• boundary conditions and initial conditions
• external sources and emission sources

• Particle Tracking – tracking distance to an event in time:
• distance to the spacial cell boundary
• distance to the end of the time-step
• distance to the next collision

• Tallying - computing sample means of such quantities as

• energy deposited due to all effective absorptions
• volume-averaged energy density
• fluxes

• Calculate next time-step temperature approximation T n+1
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(a) LDG solution in slab geometry
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(b) IMC solution in slab geometry
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• An IMC particle is a simulation abstraction representing a
‘radiation energy bundle’ characterized by

• the energy-weight (relative number of photons represented by an
IMC particle)

• spacial location
• angle of flight
• frequency group it belongs to

• On each simulation time step tn ≤ t ≤ tn+1 an IMC particle can
undergo the following events:

• escape through the boundaries
• get absorbed by the material
• scattering / re-emission
• survive (particle goes to census at tn+1)

• Surviving particles are called census particles and have to be
stored in memory to be reused on the next time-step

Can we ‘learn’ the probability distribution function describing census
particles at the end of each time-step and store in memory only this
distribution?
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• Expectation Maximization (EM) is an iterative method for
estimating parameters from probabilistic models. It is typically
applied to the Finite Mixture Models

P(xj , θ) =
k∑

i=1

pi F(xj , θi ) (13)

• F(xj , θi ) - pdf with the parameter vector θi
• xj - data points from the sample X n = (x1, x2, . . . , xn)
• pi - probability of F(xj , θi ) in the mixture

∑n
i=1 pi = 1

• EM algorithm alternates between the Expectation and
Maximization steps:

• Expectation (E) step - computing priors (probabilities)
• Maximization (M) step - updating model parameters θi that

maximize expected Likelihood function

L(X n) =
n∑

j=1

ln
k∑

i=1

pi F(xj , θi ) (14)
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• A Hyper-Erlang Model H(ν, α, β) is a mixture of Erlang
distributions E(ν, α, β):

m∑
k=1

pk E(νi , αk , βk) =
m∑

k=1

pk
1

(αk − 1)!
ναk−1
i β−αk

k e(−νi/βk )

where
• {ν1, . . . , νn} is an iid data sample
• αk > 0 - integer shape parameter, βk > 0 - real scale parameter

• Expectation Maximization priors

γik =
pk E(νi , αk , βk)∑m
k=1 pk E(νi , αk , βk)

, i = 1, . . . , n, k = 1, . . .m (15)

• Maximum Likelihood parameter estimates

βk =

∑n
i=1 γik νi

αk

∑n
i=1 γik

, pk =

∑n
i=1 γik
n

, k = 1, . . . ,m (16)
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• In the LTE emission term in the Transport Equation is given by
the Planckian Bν

• Frequency-normalized Planckian density function

bν(T ) =
Bν(T )∫∞

0
Bν(T )dν

=
15

π4

ν3

T 4 (eν/T − 1)
(17)

• There are no closed-form EM estimates of T for bν(T ) mixtures

• Can we model Planckian-like distributions with Erlang mixtures?

• Erlang distribution

E(ν, α,T ) =
1

(α− 1)!

να−1

Tα eν/T
(18)

• Consider Erlang distributions with shapes α = {3, 4}

E(ν, 3,T ) =
1

2

ν2

T 3 eν/T
, E(ν, 4,T ) =

1

6

ν3

T 4 eν/T
(19)
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Figure: Planckian frequency data sample size: 200, 000
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• IMC particles in group g are characterized by the same average
frequency, i.e. have the same likelihood to be drawn from g

• Cumulative energy-weight ωg =
∑npg

j=1 ω
g
j of npg particles in g is

the relative number of photons represented by all particles in g

• Weighted Log-Likelihood of the Hyper-Erlang IMC Model

ln
n∏

g=1

(
m∑

k=1

pk E(νg , αk , βk)

)ωg

=
n∑

g=1

ωg ln
m∑

k=1

pk E(νg , αk , βk)

• Weighted Maximum Likelihood / EM parameter estimates

γgk =
pk E(νg , αk , βk)∑m
k=1 pk E(νg , αk , βk)

, g = 1, . . . , n, k = 1, . . .m

βk =

∑n
g=1 ω

g γgk νg

αk

∑n
g=1 ω

g γgk
, pk =

∑n
g=1 γgk∑n
g=1 ω

g
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compressing IMC particles
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Figure: Planckian IMC data sample from the time step t0 = 0 (initial
temperature T0 = 100, 500 groups), Normalized Planckian bν(T ) at
T = 100 and the Hyper-Erlang Model H(ν, α, β) of the sample with 20
mixture elements.

Note: for x ∼ bν(T ) and y ∼ H(ν, α, β): ‖x− y‖∞ = 6.2× 10−6
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Table: Parameters of the Hyper-Erlang Model of the Planckian IMC data
sample with initial temperature T0 = 100 from the time step t0 = 0.
Shape parameters αk are fixed, scale parameters βk model radiation
temperature and k = 1, 2, . . . , 20.

pk αk βk

0. 1 358.246
0.0248371 2 182.592
0.2026990 3 97.1897
0.2191770 4 71.5419
0.1673600 5 73.3836
0.1283270 6 69.3727
0.0927585 7 64.5944
0.0622957 8 61.4264
0.0394477 9 60.4135
0.0244054 10 60.7461
0.0151412 11 61.0587
0.0094205 12 60.8283
0.0058112 13 59.8523
0.0035262 14 58.2133
0.0020989 15 56.3901
0.0012253 16 54.7773
0.0007035 17 53.6442
0.0004003 18 53.2266
0.0002299 19 53.6196
0.0001359 20 54.2246
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• von Mises-Fisher distribution on a sphere in Rp:

MF(x, λ, κ) =
κp/2−1

(2π)p/2 Ip/2−1(κ)
eκ (λT x) (20)

• x ∈ Rp, ‖x‖ = 1 - random vector
• λ, ‖λ‖ = 1 - mean direction parameter vector
• κ ≥ 0 - the concentration parameter
• In(κ) - the modified Bessel function of the first kind of order n

• von Mises (Tikhonov / Circular Normal) distribution on a circle
for random angle θ ∈ [0, 2π)

M(θ, φ, κ) =
eκ cos (θ−φ)

2π I0(κ)
(21)

where mean angle φ ∈ [0, 2π) and concentration κ ≥ 0.
• when concentration κ = 0, M(θ, φ, κ) is isotropic in angle
• the larger is κ, the more concentrated is M(θ, φ, κ) around φ
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M(θ, φ, κ) =
eκ cos (θ−φ)

2π I0(κ)
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Figure: Probability density function of the von Mises distribution for the
angle θ ∈ [−π, π] and mean angle φ = 0
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von Mises distribution

Consider angular data sample

(θ1, . . . , θn).

Let s =
∑n

i sin θi , c =
∑n

i cos θi . Then the MLE of the mean angle
φ is defined as follows:

φ =


arctan(s/c), c > 0, s ≥ 0

arctan(s/c) + 2π, c > 0, s < 0

π/2, c = 0, s > 0, 3π/2 c = 0, s ≤ 0

arctan(s/c) + π, c < 0

(22)

The MLE of the concentration κ can be approximated as follows:

κ ≈


2.0R + R3 + 0.83R5, R < 0.53

−0.4 + 1.39R + 0.43/(1.0− R), 0.53 < R < 0.85

1/(R3 − 4.0R2 + 3R), R > 0.85,

where R =
√
s2 + c2/n is the normalized resultant (Fisher, 1993).
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for von Mises Mixtures

If we define ‘mixture sin’ and ‘mixture cos’

s̃k =
n∑

i=1

γik sin θi , c̃k =
n∑

i=1

γik cos θi

we can rewrite EM estimates φk of the mean angle as follows:

φk =


arctan(s̃k/c̃k), c̃k > 0, s̃k ≥ 0

arctan(s̃k/c̃k) + 2π, c̃k > 0, s̃k < 0

π/2, c̃k = 0, s̃k > 0, 3π/2 c̃k = 0, s̃k ≤ 0

arctan(s̃k/c̃k) + π, c̃k < 0



Machine
Learning for IMC

Anna Matsekh Expectation Maximization
for von Mises Mixtures

We can now define ‘normalized mixture resultant’

Rk =

√
s̃2k + c̃2k∑n
i=1 γik

‘normalized mixture sin’ and ‘normalized mixture cos’

sinφk =
s̃k
Rk
, cosφk =

c̃k
Rk

and the mixture concentration parameter can now be estimated as

κk ≈


2Rk +R3

k +
5

6
R5

k , Rk < 0.53

−0.4 + 1.39Rk + 0.43/(1.0−Rk), 0.53 < Rk < 0.85

1/(R3
k − 4R2

k + 3Rk), Rk > 0.85
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isotropic angular IMC data
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Figure: Angular IMC data distributed isotropically on [0, Pi], fitted to the
learned 4-component von Mises Mixture Model

pk φk κk

0.25 1.5667 0.0
0.25 1.5667 0.0
0.25 1.5667 0.0
0.25 1.5667 0.0

Table: Learned parameters of the 4-component von Mises Mixture Model.
Log-likelihood error estimate δ = 9.3e − 10.
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anisotropic angular IMC data
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Figure: 4-component von Mises Mixture Model of IMC data equally
concentrated around π/4 ≈ 0.785398 and 2π/3 ≈ 2.0944
(estimates from the 15th EM iteration step)

pk φk κk

0.47435413 0.785398 1493507.3
0.02537341 1.056737 3.68
0.02448313 1.784607 3.48
0.47578933 2.094395 2242910.4

Table: Parameters of the 4-component von Mises Mixture Model
(estimates from the 15th EM iteration step)
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• Memory usage reduction during the code checkpointing and
restarting steps is of great importance in the IMC simulations

• Innovation: storing only parameters of the probability
distributions of census particles in place of the data structures
describing them in order to reduce IMC storage requirements

• Innovation: Expectation Maximization and Weighted
Hyper-Erlang Models can accurately model Planckian and
therefore are appropriate for compression of isotropic IMC
census data in the frequency domain in LTE

• Innovation: We are currently researching applicability of the
Expectation Maximization and von Mises-Fisher Mixture Models
for compression of anisotropic IMC census data in angle


